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Figure 1: Exchanging contact data during handshake gesture.

Alignment of gravity vector along y-axis of accelerometer is used to

detect initiation of handshake.
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Abstract
We present ShakeCast, a system for automatic peer-to-peer

exchange of contact information between two persons who

just shook hands. The accelerometer in a smartwatch is

used to detect the physical handshake and implicitly triggers

a setup-free information transfer between the users’ personal

smartphones using Bluetooth LE broadcasts. An abstract

representation of the handshake motion data is used to

disambiguate between multiple simultaneous transmissions

and to prevent accidental data leakage.

To evaluate our system, we collected individual wrist

acceleration data from 130 handshakes, performed by

varying combinations of 20 volunteers. We present a

systematic analysis of possible data features which can be

used for disambiguation, and we validate our approach using

the most salient features. Our analysis shows an expected

match rate between corresponding handshakes of 92.3%.
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Introduction
Exchanging contact information is a mundane task that

people have attempted to simplify for centuries, first through

physical items such as business cards and, more recently,

through technological means such as data transfer via

smartphones. For example, many modern mobile devices

are capable of directly exchanging contact data when held

back-to-back through an integrated NFC transceiver.

Nevertheless, all these methods still require active

participation of the user, which may become burdensome

when many contacts are made in a context such as a

business fair or conference.

However, it is customary in many cultures to briefly shake

hands with the other person upon meeting. Based on this

custom, we present ShakeCast, a system which uses the

handshake as an implicit trigger to broadcast a small,

user-selected information snippet containing contact

information. An off-the-shelf smartwatch is used as a

wrist-worn sensor to detect the motion made by the users’

hands, and a regular smartphone then broadcasts the

contact snippet to other devices within reception range while

at the same time listening for the peer device’s transmission.

Note that in a scenario such as a business meeting, several

handshakes may take place simultaneously within close

proximity to each other. To ensure that contact data is only

exchanged with those persons the user actually shook hands

with, the broadcast data is hashed with a feature vector

extracted from the motion data itself.

Related Work
The growing popularity of smartwatches allows for a variety

of novel system interaction modalities like the recognition of

and response to motion gestures. The Office Smartwatch [3],

for example, recognizes hand turns to lock and unlock doors

or knocking gestures to virtually announce the presence of a

person in front of the door. Wilkinson et al. use a smartwatch

to augment touch gestures on a tablet with additional

degrees of freedom [11]. Xu et al. [13] have shown that

gesture recognition with watches works even for finger

gestures, while WatchMI [14] uses IMU data to augment

touches on the watch with additional information such as

pressure. Motion data can also be maliciously exploited to

reconstruct text written on a whiteboard [1], typed PINs on

the phone [9] or typed text on a keyboard [10].

The concept of gesture-based exchange of contact

information was proposed by Hinckley [6] and first

demonstrated with iBand [7], a custom bracelet-like device

that is able to detect up-and-down movements and to

exchange information via built-in infrared sensors. The

ShakeOnit system [4] is capable of detecting various

two-sided greeting gestures by using data gloves. Strategies

for detecting handshakes using smartwatches combined with

a subsequent data exchange have been shown by Augimeri

et al. [2] and Wu et al. [12]. However, these strategies need

the full accelerometer data of the other participating device to

make a decision and hence require a pre-existing network

connection between the devices. SyncTap by Rekimoto [8]

purely relies on timing information of a simultaneous button

press to pair two devices on the same network.

A promising approach to handshake-triggered data exchange

was presented by Aimee Ferouge [5], who introduced

peakmaps to resolve ambiguities when more than a single

pair of people shake hands in close proximity. Although this

doesn’t require the full accelerometer data of the other side,

there still is the need for an initial data exchange before

decisions can be made. In our system, we aim at making all

decisions about detection and disambiguation locally, i.e.

without any accelerometer data from other devices.



ShakeCast
Our system was designed to combine and improve the

characteristics of the works presented above. In particular,

ShakeCast should be able to: a) detect handshakes using

commodity smartwatches without any custom hardware

modifications, b) correlate matching handshakes based on

locally available data only (i.e. no prior data exchange), c)

exchange contact information when a matching handshake

was successfully detected - without the need for any

additional infrastructures (peer-to-peer), and d) disambiguate

between multiple arriving contact data from people in close

proximity.

We used two LG G Watches running Android Wear 1.5 as

wearable sensors and paired each to a corresponding

smartphone. In our test setup, we used two Motorola Moto E

(2nd generation) running Android 6.0 as peer devices. The

smartphone and the smartwatch were connected via

Bluetooth LE using the Android Wear framework. The

smartphones exchange contact data via BTLE

advertisements.

Handshake Detection

During an initial video analysis, we found that a typical

handshake consists of three consecutive phases. In the

invitation phase, one of the participants raises the forearm to

a horizontal orientation with the hand being open. Accepting

the invitation, the partner performs the same arm movement

and grabs the inviting hand. Then, the oscillation phase

follows, where both partners move their hands up and down.

Eventually, in the finalization phase, the hands are released

and the forearms of both participants move back to their

initial positions.

In our system, we use these distinct phases to automatically

detect a handshake using the accelerometer data of a

commodity smartwatch worn at the wrist of the shaking hand.

As also illustrated in figure 1, the gravity component of the

accelerometer data shifts mostly to the y-axis in the invitation

phase and back out in the finalization phase. These events

serve as start and end triggers for the deeper analysis of

accelerometer data recorded between the trigger events,

which will be referred to as a data packet. The exact gravity

force threshold for the y-axis was set to 7m/s2. This

approach allowed us to reduce the battery consumption by

discarding irrelevant gestures directly on the smartwatch. A

lower sample rate could also be used before initiation to

further conserve power.

To detect the characteristic handshake oscillation movement

on the y-axis, we move a window of width w through the data

values and check for acceleration values of a minimum

intensity imin; if the longest streak of these positive windows

exceeds a threshold of n, a handshake was detected in this

data packet. Using the aforementioned hardware operating

at 100 Hz, we empirically found w = 20, imin = 15m/s2

and n = 6 to be suitable values. In order to reduce the

analysis effort for data packets triggered accidentally by

non-shake motions, we require an incoming packet to be

between a minimum (lmin = 100) and maximum sample

length (lmax = 700), i.e. between 1 and 7 seconds.

For the handshake matching mechanism explained below,

we require a reliable labelling of the oscillation region’s start

within the analyzed data packet. To this end, we use the first

minimum or maximum after the start of the first positive

window. Figure 2 shows an exemplary handshake plot, in

which the longest positive window streak and the first local

minimum within it is visualized.

Peer-to-Peer Data Exchange

When a handshake was detected, the system exchanges

contact data between the two smartphones using Bluetooth

Low Energy due to its ability to broadcast small



Figure 2: An exemplary y-acceleration plot of a handshake from

both participants. The red (outer) lines indicate start and end of the

longest positive window streak; the blue (inner) line is the first local

extremum within this extracted range.

advertisement packets to all nearby devices without any prior

setup. A user-configured URL (e.g. pointing to the user’s

homepage or business profile) is shortened using the bit.ly

service to account for the highly restricted payload size of at

most 31 bytes in the advertisement broadcast, and is then

sent out to peer devices as manufacturer-specific data with a

custom payload ID. At the same time, each device listens for

incoming broadcasts with matching payload ID and saves the

received URL into a list of recent contacts while indicating

successful reception through a brief vibration.

However, when multiple pairs of people are shaking hands in

close proximity, a single mobile device may receive several

broadcasts, i.e. also contacts of people that the owner did

not actually shake hands with. To address this issue, we use

the features described in the next section to derive a code

with which the payload is hashed (using XOR) before being

sent to the other devices. Ideally, only the device with the

matching handshake data can reconstruct this code and

therefore decode the payload. Please note that this is just a

disambiguation mechanism and must not be considered an

encryption in the cryptographic sense. However, since the

intended usage of our system is to only transfer

publicly-available data such as the user’s homepage URL,

this does not pose a major privacy issue (although some form

of contact network analysis may be possible nevertheless).

We briefly evaluated wireless signal strength as an

alternative disambiguation mechanism. However, even

preliminary tests showed that the physical distance itself has

far less influence on the weak BTLE signal than other

confounding factors, such as placement of the phone in the

front or back pocket, body orientation etc. We therefore

focused on the feature-based approach described below.

Handshake Matching

As a data basis for our analysis, we collected data from 130

handshakes among varying combinations of 20 volunteers.

Both participants wore the smartwatch on their dominant

hand, and all data between the start and end labels were

logged on the smartphone, resulting in 260 unique

acceleration traces. In order to generate the same code for

hashing on both devices out of slightly different acceleration

curves, we need to determine features which behave similar,

given two related sets of accelerometer data (x- ,y-, and

z-axis over a data packet identified by the algorithm

described above). We considered the Fast Fourier

Transformation (FFT) of the signal as most important set of

features because of its time invariant and noise filtering

properties.

The features we take into consideration are a variety of FFT

values, the mean value of the signal and the amount of zero

crossings for the data obtained in the handshake window. For

an exemplary FFT window size of 65, we denote the resulting



32 distinct FFT values for the seven channel combinations as

FFTi0 to FFTi31 for i ∈ {X,Y, Z,XY,XZ, Y Z,XY Z},

where XY is the magnitude of the (combined)

accelerometer channels: XYj =
√

x2
j + y2j .

Due to inherent noise, the data packets for two matching

handshakes will have different length. We address this by

using a fixed window size for feature extraction. An optimal

window size can be estimated by iterating through variable

window sizes and looking for maximum correlation in our

sample data. We evaluated window sizes in the range

between 50 and 100 samples with a step size of 5. The lower

bound was chosen to get a representative sample of the

oscillation phase and not only one peak, the upper bound so

that not too much non-handshake data will be taken into

account. The latter would happen if the oscillation phase

were shorter than the window size.

To analyze the data, we generated virtual instances of

handshakes by combining all the individual data recordings

in pairs and looking at the difference in feature values. 260

individual traces combine into
n(n−1)

2 = 33670 instances,

130 matching and 33540 non-matching. If multiple

non-matching instances were generated where the

handshake partners were the same persons, we removed all

but one instance to avoid biasing the data towards specific

persons. This information was only partly available, resulting

in a total number of 16589 non-matching instances.

The goal was now to find the features that are most suitable

to correctly classify the instances regarding their target

classes. A perfect feature will have a minimal difference

within in the set of matching and maximal difference within

the set of non-matching instances. To measure this quality,

we used the Pearson product-moment correlation coefficient,

also called Pearson’s r, between the individual feature and

the target vector. After running our analysis on the sample

data, we found the highest importance for the features of

FFTY 2, FFTY 3 and FFTXY Z0 with a window size of 65

(i.e. 0.65 seconds), as illustrated in figure 3.

Figure 3: The three most important features, ordered by Pearson’s

r with their distribution of differences. Blue filled boxes show the

difference distribution in the set of matching instances, red empty

boxes in the set of non-matching instances.

Using these features, we created a simple encoding scheme

that takes an incoming contact broadcast and a recent local

handshake data packet. A successful decoding step shows

that these are in fact data from one physical handshake,

while a failure to decode shows they are part of different

handshakes. We divide the value range of a feature into 7

equally sized successive regions (bins) and assign a bit

sequence to each bin, which is simply the binary

representation of the bin number. The concatenation of all bit

sequences resulting from each feature value’s bin is then

used as a hash value to encode the data in the contact

broadcast.

However, due to the large amount of noise present in the

data, the local representation of the handshake may have

sufficiently different feature values so that they fall into



different bins than those used in the broadcast, even if they

have been computed from the same physical handshake. In

order to allow for some margin of error, multiple hashes are

generated by also considering one or more adjacent bins for

each feature. If any hash succeeds in decoding the

broadcast data (i.e. the result is a valid HTTP URL), it is

accepted as a match. Consequently, the decoding can

always take up to Decmax = (2a+ 1)Nf steps, where a
denotes the accepted bin difference and Nf the amount of

features we select. Fortunately, the computational cost of

even multiple decoding attempts is negligible. Of course, this

approach raises the false-positive rate, as discussed in the

following section.

Evaluation

Figure 4: Histograms showing the bin distance of the matching

instances in blue and the non-matching instances in red for feature

FFTY 2.

As can be seen in figure 4, for the strongest feature FFTY 2

only about 50% of all actually matching shakes fall into the

same bin, but the vast majority of the other matching pairs

fall in an adjacent bin.Therefore, an accepted bin difference

of at least 1 should be chosen. From a usability point-of-view,

the worst case for the classifier would be a false negative, as

the users would have to shake hands again to complete the

exchange. False positives, on the other hand, could be

reduced using additional non-feature-based approaches

such as evaluating Bluetooth signal strength.

Predicted

Nf , a Actual Positive Negative

Nf = 2, a = 1 Positive 76.15% 23.85%

Negative 21.17% 78.83%

Nf = 3, a = 1 Positive 57.69% 42.31%

Negative 11.23% 88.77%

Nf = 2, a = 2 Positive 96.92% 3.08%

Negative 46.95% 53.05%

Nf = 3, a = 2 Positive 92.31% 7.69%

Negative 33.68% 66.32%

Table 1: Confusion matrices illustrating the proportions of

(in-)correctly matched handshakes for varying amounts of selected

features Nf and accepted bin difference a.

Table 1 shows us the different accuracies we can achieve for

different a and Nf values where Nf follows the order of the

most valuable attributes established in Figure 3. Using only

the two most salient feature FFTY 2 and FFTY 3 provides

nearly 77% true positive and 79% true negative matches with

Decmax = 9 decoding steps (2 features with 3 possible bins

each). Adding the third feature FFTXY Z0 further improves

the true negative rate but reduces the true positive rate by

roughly 20%, an undesirable result (Decmax = 27). Allowing

a bin difference of two instead vastly reduces the false

negatives rate. While this allows us to accept nearly all

matches, we have more than doubled our false positive rate

(Decmax = 25).

Using both bin difference a = 2 and including the third

feature gives us better values in true positives and in true



negatives than both variants with a = 1 and far better true

negative values than with two features for 4% worse true

positive values. This approach provides the best-balanced

solution, although the decoding process for every received

handshake will now take up to Decmax = 125 steps.

However, even in the worst case with up to 125 iterations, the

decoding process still takes only a negligible amount of time

due to the tiny amount of encoded data.

Discussion & Future Work
We have presented ShakeCast, a method to automatically

exchange contact data between two persons shaking hands.

We contribute a peer-to-peer approach to identify the correct

handshake among multiple candidates, a method to encode

contact data into space-constrained BTLE broadcasts, and

an evaluation of our approach on a dataset of real-world

handshakes.

During our data collection process, we observed that the

motions for the same handshake between two persons can

vary widely (e.g. "fishy" vs. "firm" handshake). This often

leads to huge differences in the accelerometer output.

Therefore, the generation of an unique and robust identifier

based just on the accelerometer data is a hard problem. Our

best-balanced solution will not recognize about 7.7% of

handshakes in a scenario with multiple simultaneous

transmissions, while mistakenly collecting about 33.7% of

non-matching transmissions. In the future, we will use more

advanced analysis methods such as PCA, in combination

with a k-fold validation approach, to improve our matching

algorithm.

Another possible solution might be to use additional sensors

to get more accurate information about the actual handshake.

For example, an approach we consider promising would be

the use of a smart ring. A finger-worn sensor would provide

the opportunity to exclude the additional movement in the

wrist joint from the accelerometer data.

One drawback of our approach is the fact that the usage of a

smartwatch is not ideal for this application as the watch has

to be worn on the shaking hand. This conflicts with the habit

that most people usually wear their watch on the

non-dominant hand while using the dominant one for shaking

hands. However, the increased popularity of fitness trackers

which are also worn on the dominant hand may provide an

opportunity to detect handshakes without forcing the users to

change their habits.
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