The Massive Mobile Multiuser Framework: Enabling Ad-hoc
Realtime Interaction on Public Displays with Mobile Devices

Tim WeiBker, Andreas Berst,
Johannes Hartmann, Florian Echtler
Bauhaus-Universitit Weimar
Weimar, Germany
firstname.lastname@uni-weimar.de

ABSTRACT

In this paper, we present the Massive Mobile Multiuser (M3)
framework, a software platform designed to enable setup-free,
real-time, concurrent interaction with shared public displays
through large numbers of personal mobile devices. This work
is motivated by the fact that simultaneous interaction of mul-
tiple persons with public displays requires either dedicated
tracking hardware to detect gestures or touch, or a way for
users to interact through their personal mobile devices. The lat-
ter option provides more flexibility but also presents a height-
ened entry barrier as it often requires installation of custom
software.

To address these issues, M3 enables immediate interaction
through the mobile browser without requiring prior setup on
the user side, and real-time interaction suitable for fast multi-
player games. We present a detailed analysis of latency sources
and findings from two real-world deployments of our frame-
work in public settings with up to 17 concurrent users. Despite
a resource-constrained environment and an unpredictable se-
lection of client devices, M3 consistently delivers performance
suitable for real-time interaction.

ACM CLASSIFICATION KEYWORDS
H.5.2. User Interfaces: Input Devices and Strategies; H.5.3.
Group and Organization Interfaces: Web-based Interfaces

AUTHOR KEYWORDS
public display; mobile device; multi-user interface; real-time
interaction; multiplayer gaming

INTRODUCTION AND MOTIVATION

Although public displays have become a common sight in
recent years for applications such as advertisements and enter-
tainment, these displays are still mostly passive information
sources. Various approaches exist to enable interaction with
such devices, in particular focusing on touch and gestures as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

PerDis '16, June 20 - 22, 2016, Oulu, Finland.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4366-4/16/06 $15.00

DOIL: http://dx.doi.org/10.1145/2914920.2915004

63.930439 fps

Figure 1. A massive multiplayer soccer game was implemented on the
basis of M> framework. 17 users play concurrently on a large public
display using their personal mobile devices at an electronic arts festival.

interface modalities. However, these options usually offer
only a limited set of actions (gestures), cannot be scaled to
arbitrary display sizes (touch), or offer only limited support
for multiple concurrent users (both). If a more complex inter-
face with multi-user support is desired, particularly for large
groups of 10 or more users, an alternative is to employ the
users’ personal mobile devices. Unfortunately, this approach
suffers from a heightened entry barrier as users are usually re-
quired to install a custom app before interaction is possible. A
recent example for such a scenario is TextBlaster by Vertanen
et al. [22]. Given that only a short time window is available to
engage potential users in a walk-up-and-use scenario [15], the
end result is often that no interaction will take place after all.

To address these issues, we present the Massive Mobile Mul-
tiuser (M3) framework, which allows setup-free, real-time in-
teraction with public displays by utilizing the mobile browser.
Depending on the scenario, users only have to visit a web page,
which may be presented via a short printed URL or a QR code
to start interacting. In particular, our system has sufficiently
low latency to enable interaction even with fast-paced multi-
player games. Although a large body of research on this topic
exists, our approach is, to our knowledge, the first to combine
setup-free interaction, real-time capabilities and support for a
large number of concurrent users.

In this paper, we give an overview of the architecture of
M3, describe our analysis and measurements of the system’s
latency, and present our findings from two real-world de-

http://dx.doi.org/10.1145/2914920.2915004

ployments in a resource-constrained environment with 97
distinct users (up to 17 concurrently). The API as well as
all source code for the framework and the sample game is
available under an open-source license at https://github.com/
mmbuw/massive-mobile-multiplayer. A video showing live
interaction of 17 participants at a public event is available at
https://www.youtube.com/watch?v=niA5SVwu3BtE.

RELATED WORK

Interaction with public displays is a topic which has already
been explored by numerous researchers, although not in the
combination of features we focus on (no setup, real-time inter-
action, multiple users). We identify three main directions of
research pertinent to our approach: vision-based and browser-
based interaction using personal mobile devices, and gestural
interaction using sensors embedded into the display.

Vision-based interaction usually employs an approach where
the public display is viewed through a live video feed on the
mobile device and interaction is done through touch on the
video representation. A seminal example is Touch Projector
by Boring et al. [4] although earlier work by Ballagas et al.
[3] already presented a similar approach on non-touch devices.
Common limitations of this approach are that it requires a
custom app to be installed before interaction can take place,
and that the mobile device has to be held in a camera-like pose
to enable interaction.

Browser-based interaction, on the other hand, emphasizes
the aspect of requiring no setup prior to interaction, which
is performed through the pre-installed web browser on the
mobile device. For example, Kubitza et al. present VEII [13,
14], which allows on-site modificiation of public displays in
museums through a mobile device. Alt et al. present Digifieds
[1, 2], a framework to exchange content with public digital
notice boards using a combination of mobile apps and custom
websites. Geel et al. show PresiShare [10], a setup-less web
application for mobile devices, which uses QR codes to share
media on multiple public displays. MoCHA, a modular web-
based multi-device framework by Oat et al. uses QR codes to
establish the connection between client and server [19].

Dingler et al. present uCanvas [7], a web-based framework
to employ the mobile device’s accelerometer for interaction
with the public display. In the context of collaborative mu-
sic creation, Weitzner et al. developed MassMobile [23], an
audience participation framework designed to control a large
Max/MSP installation. Also, recent versions of the Android
operating system include Google Nearby [11], an API de-
signed to enable interaction between co-located smartphones
and optionally also shared displays. The latter approach, how-
ever, again requires prior installation of a custom app and is
not platform-independent.

Both the smartphone-camera- and browser-based research di-
rections do not seem to focus on simultaneous real-time inter-
action from multiple users. Although both approaches should
in theory be capable of supporting multiple concurrent users,
this has not been investigated extensively. When multi-user
capability is desired, most research currently centers around
gesture-based interaction using sensors such as the Kinect.

One current example is ShadowTouch by Elhart et al. [8],
in which the users’ silhouettes are overlaid over the display
and augmented with individual selection menus. A similar ap-
proach with depth cameras, focusing on a playful experience
in a shop window for multiple passersby, was presented by
Miiller et al. [17].

ARCHITECTURE OF M FRAMEWORK

The M3 Framework consists of a client-server architecture, in
which a server performs the application logic and renders a
visualization of its internal model to the shared public display.
The mobile client devices collect inputs from their respective
users for manipulating this model and forward them to the
server using a wireless communication channel. Following
these principles, our framework consists of three modules.
While the frontend runs on the client devices, the backend and
the application are deployed on the server. The relationships
between these modules are illustrated in Figure 2.

public
display
I HDMI
< UWIFI3G Y
Application
HTML5/JS
controller evdev
")
(Frontend) ebSocket
f Backend
Browser
HTTP server
(e.g. Apache)

mobile device

Linux server

Figure 2. Graphical illustration of M? framework’s architecture. The
frontend module runs on the mobile client device; the backend and the
application module are deployed on the server to which the public dis-
play is connected. To send messages to the the server, a wireless commu-
nication channel is used.

Frontend

When a user wants to participate, they wirelessly connect
their mobile device to the server. By opening a specific URL
in a browser, the connected client is supplied with the front-
end module of the framework via a regular web server. This
module opens a WebSocket [9] connection to the backend for
realtime communication. In order to collect input data from the
user, it displays a virtual input device interface using HTMLS5
and JavaScript. Examples for simulated input device interfaces
include a virtual keyboard or a game controller. The frontend
currently supports the mobile Firefox, Safari and Chrome
browsers. As the concrete appearance of this mobile interface
depends on the intended usage scenario, it is the task of the
developer to create the involved UI elements together with
their touch event handling. After a touch has been recognized,

https://github.com/mmbuw/massive-mobile-multiplayer
https://github.com/mmbuw/massive-mobile-multiplayer
https://www.youtube.com/watch?v=niA5Vwu3BtE

I mobile device (client)]

Touch contact '
on touch panel

Host touch ' Event manag-
driver ment queue =

|

Frontend ' Send message *
(Browser) via WebSocket

I Raspberry Pi (server) 1

... network ... Recv. message ' Inject event on ' Event processed *
(~8ms) ' via WebSocket virtual device by application

Display
refreshed

| 0.84 ms 8.89 ms

16.6 ms 2.5ms 29.86 ms (o= 6.13 ms)

(0=0.37ms) (0=4.67 ms) 8.3ms

Figure 3. A detailed analysis of latency sources involved in the usage of /> Framework. The illustrated time values were both researched (cursive) and
measured to describe the average case; when we were supplied with a worst case time, we assumed half of it as average value.

the framework specifies the encoding of messages to be sent
to the server via the WebSocket connection.

Backend

The Linux-based backend module is the core of the framework,
which runs on the server and waits for incoming WebSocket
connections by mobile client devices. When a new connec-
tion is established, this module creates an event device using
the uinput library, which allows dynamic creation of virtual
input devices. Each incoming message from a client is then
interpreted, and the corresponding event is triggered on the
respective event device. Before compilation of the backend
module, the allowed event types, event codes and correspond-
ing WebSocket messages can be customized in a configuration
file by the developer.

The configuration file in Listing 1, for example, defines
event devices producing continuous absolute values in two-
dimensional space and a discrete button value.

Listing 1. Example backend configuration for continuous absolute 2D
and discrete button input.

type EV_ABS AB
event ABS X X
event ABS.Y Y

type EVKEY K
event BTN_A A

This specification of events also defines the plain-text protocol
for the respective socket messages. According to Listing 1,
examples for valid socket messages include "EV_ABS ABS_X
111$ and "EV.KEY BTN_A 1§ for injecting single events and
"EV_ABS * 111 222$ for multiple ones in a single message.
The third word at the end of a configuration line defines an
alias for the corresponding type or event, which may help to
reduce the amount of data sent via the socket. Consequently,
"AB X 123$ is also a valid message, which is equivalent to
the first example. The caret and dollar signs are delimiters to
detect corrupted messages.

Application

The task of the application module is to provide an internal
model, which is visualized on the shared public display and
can be modified by the client devices. This module runs on
the server and waits for new event devices to appear. For each
of these devices, it maps the incoming events to changes in
the internal model using an appropriate transfer function. As a
result, the coupling of the application to the backend module
is only given by the evdev interface and therefore is very loose,
which makes the application easily exchangeable according to
the intended usage context. The framework provides the user

with an extensible application skeleton, which is able to react
to new devices and read their inputs. As the application itself
obviously depends on the usage context of the framework, it
needs to be fully created by the developer. Note that due to
the use of the standard Linux evdev interface, all potential
applications could also utilize standard physical input devices
like game pads connected via USB.

ANALYSIS OF LATENCY SOURCES

In order to determine the viability of our approach for real-time
interaction, we analyzed the total latency of the system. To
this end, we deployed the server modules of the M> framework
on a Raspberry Pi to mirror the intended usage scenario as
a low-power gaming appliance. Our main test client was a
Samsung GT-18190 running Chrome on Android 4.1.2, which
connected to the server using a WiFi network provided directly
by the server through an USB WiFi adapter acting as access
point. The frontend module was delivered by an Apache2 web
server. In our test setup, it provided an interface with a single
touch button, which made a corresponding circle on the shared
public screen flash up. Our goal was to estimate the total time a
touch contact on the mobile device required to be recognized,
processed and displayed on the shared public screen. The
results of our latency analysis are illustrated in Figure 3. It
can be divided into the processing times solely introduced by
M3 framework itself plus additional times dependent on the
mobile device, the network and the public display in use.

Framework components

An event arriving at the mobile operating system’s event man-
agement queue needs to be forwarded to the frontend module
of M3 running in the web browser, which then recognizes
that the button on the virtual input device was pressed. This
information is encoded in a message and sent to the server
over the WebSocket connection. In order to quantify the time
needed for these steps, we wrote a script for the monkeyrunner
UI testing tool, which injected 100 touch events into the event
pipeline in irregular intervals. By computing the time differ-
ence between event injection and network packet arrival at the
Raspberry Pi server (using the rcpdump network capturing util-
ity), we measured an average duration of 29.86 ms (standard
deviation ¢ = 6.13 ms) for these components. Further tests
involving more modern client devices revealed that the time
from event management queue to network packet arrival on
the server can be even lower, going down to 12.12 ms (o =
2.73 ms) on a Google Nexus 4.

When a network packet arrives on the server, it needs to be
processed by the backend module of M3, and the intended
event needs to be triggered on the corresponding event device.
We measured 100 time differences between the arrival of a
network packet and the time stamp of the triggered event,

resulting in an average latency of 0.84 ms (¢ = 0.37 ms) for
the backend module.

In the last step, the application module needs some additional
time to react to the triggered event on the event device. In our
example, we therefore measured the time differences between
an event’s time stamp and the time of the method call coloring
the circle on the shared public display. As our application’s
main loop runs at 60Hz, we expected a worst case time of 16.67
ms for this step. Measurements with 100 events resulted in an
average of 8.89 ms (¢ = 4.67 ms), confirming this expectation.

External components

For our previous analyses, we injected touch events artificially
using the monkeyrunner tool. However, in real-world deploy-
ments of our architecture, touch events are generated by the
user; thus, we need to examine the time which is needed to
recognize touches on the mobile device’s touch layer and to
forward them to the event queue. This is extensively discussed
by Padre [20] and Chang [5], which leads us to assume an
average latency of 16.6 ms for the touchscreen (considering
the touchscreen itself is sampled at 100 Hz, but internally syn-
chronized to the LCD refresh rate of 60 Hz, which results in
slightly varying response times to a touch), plus an additional
2.5 ms for internal preprocessing.

Finally, we also need to take the refresh rate of the public
display into account, which introduces some additional time
after the draw call coloring the circle until the actual noticeable
color change on the screen. If, like in our case, the public
display runs at a refresh rate of 60Hz, another 8.3 ms latency
need to be assumed on average (16.67 ms in the worst case).

Interpretation and discussion

Until recently, interactive systems aimed to achieve latency be-
low 100 ms according to Wickens [24]. However, more recent
work by Ivkovic et al. [12] showed that user performance in
targeting and tracking tasks already begins to decline slightly
at latencies around 70 ms when compared to a baseline latency
of 11 ms. Using a custom high-speed touch sensor and output
system, Ng et al. showed that even latencies below 10 ms
can still be noticed by some users [18]. However, as we are
targeting commodity hardware, we consequently aimed for a
total system latency below 70 ms to avoid impeding user per-
formance. The measured components of M> framework total
up to 39.59 ms (Samsung GT-I8190) and 21.85 ms (Google
Nexus 4). Even when adding the estimated latencies intro-
duced by external components, we still achieve an estimated
latency of 66.99 ms for the older Samsung device and 49.25
ms for the more modern Nexus device.

As aresult, we can state that our setup is fully compatible with
applications requiring real-time communication. Although
our analysis focused on Android devices due to their better-
documented internals, comparable performance was observed
on a variety of i0S-based devices during our real-world de-
ployments.!

'0ut of 97 total participating devices, 27 were identified as Apple
devices via their MAC addresses.

As mentioned before, the illustrated values were measured
with client devices directly connected to the server using a
WiFi connection without additional network hops. Naturally,
when the network complexity is higher, the resulting addi-
tional latency needs to be added to the total, as also indicated
in earlier research by Clinch et al. [6]. In an additional experi-
ment, we connected the server to the Internet and measured an
average round-trip time of 111.50 ms (o = 61.38 ms) over a
4G connection, resulting in approximately 55 ms of additional
latency. Compared to the average round-trip time of 15.77 ms
(0 =7.94 ms) for the local WiFi network which consequently
contributes about 8 ms of latency, this is a noticeable differ-
ence, which is likely even larger when an earlier-generation
network is used. Consequently, when real-time interaction
is required, we suggest using a local WiFi network; other-
wise, connecting to the server via the Internet may be a viable
alternative.

REAL-WORLD DEPLOYMENT OF M3

In order to evaluate our framework in a real-life setting with
fast-paced multi-user interaction, we implemented a gaming
appliance based on a Raspberry Pi. We assumed that attracting
people to test the interface was easier when using a playful
application as opposed to an artificial test setup or a more
work-focused implementation as also indicated by other re-
search [16]. Consequently, we developed a video game loosely
based off HaxBall?, a simplified 2D soccer variant. It is well
suited as a stress test for our framework as it requires constant
interaction and fast reaction times while allowing players to
join or leave at any time. This game was deployed during an
open-lab event at our university as well as during a digital arts
exhibition. For the actual look of the game, refer to Figure 1.

The game constantly repeats rounds of 3 minutes duration,
which users can join at any given time. For our system, this is
done by simply joining our WiFi network and accessing any
arbitrary URL. The user will then be forwarded to the captive
portal page of our game and prompted to choose a user name.
The phone then becomes the user’s controller (see also figure
4). Users are auto-assigned to the blue or the red team based
on current score and team size; team color is also indicated by
the UI elements on the frontend. Each user is embodied by a
colored player circle on the field.

drag to move player

tap to shoot ball

Figure 4. The frontend module of the deployed soccer game using M3
framework obtains relative input values by simulating a joystick; fur-
thermore, a dedicated screen area serves as a discrete button input.

Zhttp://www.haxball.com

http://www.haxball.com

Learning to control the player -
was easy for me

1 found it easy to join
the game

eonnecimgto hegame . N
connecting to the game

The player always reacted
as | expected

| noticed some delay while
playing the game

Pestmy vt I —
of my input was lost

M totally disagree (1) W 2

50% 60% 70% 80% 90% 100%

3 W 4 W 5 M totally agree (6)

Figure 5. Results of our post-game questionnaire, to which users were redirected after they had left the game or the 30-seconds timeout was reached.

The questionnaire was filled in by 13 participants.

Over the course of two days and a total of about 8 hours, we
recorded a total of 143 games with user participation. Note
that the framework was running continuously and without in-
terruptions for the whole time period. On average, the games
were played by 5.36 (o = 3.01) participants and ended with
a total of 5.51 goals scored, which were nearly equally dis-
tributed over the two teams. The average user’s connection
lasted for 305.8 seconds, which equals to roughly 5.1 minutes
or 1.7 games. We recorded a total of 97 different MAC ad-
dresses and our longest connection recorded lasted for 2106
seconds. Note that our system disconnects inactive users af-
ter 30 seconds, so the user had actually been playing for 35
minutes straight. We received enthusiastic informal feedback
from participants, and several requests to deploy the game in
other contexts such as an office lounge.

To gather additional subjective data, we also redirected users
to a short post-game questionnaire in the browser after they
had left the game or the 30-seconds timeout was reached. This
questionnaire was completed by 13 users out of 97, likely due
to the fact that many participants simply pocketed their phone
at the end of the game and left without further looking at the
browser.

We asked our users to rate six aspects of their experience on
a 6-point Likert scale (with 1 representing “totally disagree”
and 6 being “totally agree”). We have illustrated the questions
and their respective scores in Figure 5. The perceived latency
and the feeling that given input got lost were both rated low
(median Mdn = 2; mode Mo = 1), which confirms that M3
framework’s implementation functions fast and correctly. Fur-
thermore, people found it very easy to join the game (Mdn =
6; Mo = 6) and also to learn how to control their player figure
on the shared screen (Mdn = 5; Mo = 6). While most of the
people didn’t experience problems during connecting to the
game (Mdn =3; Mo = 1), the median score indicates that there
were some exceptions. We assume that this value was heavily
influenced by the fact that recent Android phones often auto-
matically disconnect from WiFi networks that do not provide
Internet access, which was the case for our network. The most

negative feedback was given to the question whether the player
figure always reacted to user input as expected (Mdn = 4; Mo
= 3), which we partially lead back to our rather uncommon
acceleration-based transfer function [25] supplemented by our
friction simulation.

CONCLUSION AND FUTURE WORK

We have presented the Massive Mobile Multiuser framework,
which combines real-time capabilities and setup-free inter-
action with public displays using personal mobile devices.
We showed an in-depth analysis of the system’s total latency
and discussed results from two public deployments, which
confirmed our expectation that M3 enables a large number
of users to interact concurrently, in real time, and without
discouraging setup procedures. A central finding from our
analysis is that if a latency budget of at most 70 ms is as-
sumed, “fixed costs” such as touchscreen and display latency
already consume roughly half of this budget, requiring the use
of fast networks such as local WiFi connections for providing
real-time interaction.

The framework is designed in a modular way in order to pro-
vide easy exchangeability of functionalities and use cases.
While the source code for the backend module usually re-
mains constant, the frontend and the application are strongly
dependent on the framework’s usage context. Going from
a 2D to a 3D gaming scenario, another imaginable frontend
could, for example, provide two control sticks for manipulat-
ing both the player’s and the camera’s movements separately.
Apart from gaming, collaborative text editing involving a key-
board frontend might also be an interesting use case for the
framework.

Prior studies suggest that using mobile touch displays as input
for controlling content on larger screens perform better than
or equivalent to mobile-only or hybrid modalities in simple
search tasks [21]. However, the more complex the mobile
frontend becomes, the more attention shifts between the dis-
plays are needed to accomplish a task. This is mainly due to
the need of locating specific interface elements and the lack

of haptic feedback provided by the touch surface. In order
to reduce this number of attention shifts, another interesting
extension to the framework could involve using device motion
in the frontend to supplement touch inputs, similar to [7]. As
the configurable backend already supports the full set of input
events defined in the Linux kernel, including accelerometer
data, no changes are required there.

ACKNOWLEDGMENTS
This work has been presented as a demo at the electronic arts

festival Evoke 2015° and at the CHI 2016 interactivity session.

REFERENCES

1.

Florian Alt, Thomas Kubitza, Dominik Bial, Firas Zaidan,
Markus Ortel, Bjorn Zurmaar, Tim Lewen,

Alireza Sahami Shirazi, and Albrecht Schmidt. 2011.
Digifieds: insights into deploying digital public notice
areas in the wild. In Proceedings of the 10th International
Conference on Mobile and Ubiquitous Multimedia (MUM
'11). ACM, 165-174.
http://dl.acm.org/citation.cfm?id=2107618

. Florian Alt, Alireza Sahami Shirazi, Thomas Kubitza,

and Albrecht Schmidt. 2013. Interaction techniques for
creating and exchanging content with public displays. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "12). ACM,
1709-1718. http://dl.acm.org/citation.cfm?id=2466226

. Rafael Ballagas, Michael Rohs, and Jennifer G. Sheridan.

2005. Sweep and Point and Shoot: Phonecam-based
Interactions for Large Public Displays. In CHI "05
Extended Abstracts on Human Factors in Computing
Systems (CHI EA "05). ACM, New York, NY, USA,
1200-1203. DOI:
http://dx.doi.org/10.1145/1056808.1056876

. Sebastian Boring, Dominikus Baur, Andreas Butz, Sean

Gustafson, and Patrick Baudisch. 2010. Touch Projector:
Mobile Interaction Through Video. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI 10). ACM, New York, NY, USA,
2287-2296.D0I1:
http://dx.doi.org/10.1145/1753326.1753671

. Mason Chang. 2014. Android Touch Resampling

Algorithm. (2014). Retrieved April 15, 2016 from
http://www.masonchang.com/blog/2014/8/25/
androids-touch-resampling-algorithm.

. Sarah Clinch, Jan Harkes, Adrian Friday, Nigel Davies,

and Mahadev Satyanarayanan. 2012. How close is close
enough? Understanding the role of cloudlets in
supporting display appropriation by mobile users. In
Pervasive Computing and Communications (PerCom),

2012 IEEE International Conference on. IEEE, 122—127.
. Tilman Dingler, Tobias Bagg, Yves Grau, Niels Henze,

and Albrecht Schmidt. 2015. uCanvas: A Web
Framework for Spontaneous Smartphone Interaction with
Ubiquitous Displays. In Human-Computer Interaction —

3https://www.evoke.eu/2015/

10.

11.

12.

13.

14.

15.

16.

INTERACT 2015, Julio Abascal, Simone Barbosa, Mirko
Fetter, Tom Gross, Philippe Palanque, and Marco
Winckler (Eds.). Number 9298 in Lecture Notes in
Computer Science. Springer International Publishing,
402-4009. http://link.springer.com/chapter/10.1007/
978-3-319-22698-9_27

. Ivan Elhart, Federico Scacchi, Evangelos Niforatos, and

Marc Langheinrich. 2015. ShadowTouch: A Multi-user
Application Selection Interface for Interactive Public
Displays. In Proceedings of the 4th International
Symposium on Pervasive Displays (PerDis ’15). ACM,
New York, NY, USA, 209-216. DOI:
http://dx.doi.org/10.1145/2757710.2757735

. Tan Fette and Alexey Melnikov. 2011. The WebSocket

Protocol (RFC6455). (2011). Retrieved September 25,
2015 from https://tools.ietf.org/html/rfc6455.

Matthias Geel, Daniel Huguenin, and Moira C. Norrie.
2013. PresiShare: Opportunistic Sharing and Presentation
of Content Using Public Displays and QR Codes. In
Proceedings of the 2Nd ACM International Symposium
on Pervasive Displays (PerDis '13). ACM, New York,
NY, USA, 103-108. DOI:
http://dx.doi.org/10.1145/2491568.2491591

Google, Inc. 2015. Nearby. (2015). Retrieved September
25, 2015 from https://developers.google.com/nearby/.

Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven
Sutcliffe. 2015. Quantifying and Mitigating the Negative
Effects of Local Latencies on Aiming in 3D Shooter
Games. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 135-144. DOI:
http://dx.doi.org/10.1145/2702123.2702432

Thomas Kubitza, Sarah Clinch, Nigel Davies, and Marc
Langheinrich. 2013. Using mobile devices to personalize
pervasive displays. ACM SIGMOBILE Mobile Computing
and Communications Review 16, 4 (2013), 26-27.
http://dl.acm.org/citation.cfm?id=2436211

Thomas Kubitza, Sascha Thullner, and Albrecht Schmidt.
2015. VEII: A Toolkit for Editing Multimedia Content of
Interactive Installations On-site. In Proceedings of the 4th
International Symposium on Pervasive Displays (PerDis
’15). ACM, New York, NY, USA, 249-250. DOI:
http://dx.doi.org/10.1145/2757710.2776806

Jorg Miiller, Florian Alt, Daniel Michelis, and Albrecht
Schmidt. 2010. Requirements and Design Space for
Interactive Public Displays. In Proceedings of the
International Conference on Multimedia (MM ’10).
ACM, New York, NY, USA, 1285-1294. DOI:
http://dx.doi.org/10.1145/1873951.1874203

Jorg Miiller, Dieter Eberle, and Konrad Tollmar. 2014.
Communiplay: A Field Study of a Public Display
Mediaspace. In Proceedings of the 32Nd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1415-1424. DOI:
http://dx.doi.org/10.1145/2556288.2557001

http://dl.acm.org/citation.cfm?id=2107618
http://dl.acm.org/citation.cfm?id=2466226
http://dx.doi.org/10.1145/1056808.1056876
http://dx.doi.org/10.1145/1753326.1753671
http://www.masonchang.com/blog/2014/8/25/androids-touch-resampling-algorithm
http://www.masonchang.com/blog/2014/8/25/androids-touch-resampling-algorithm
https://www.evoke.eu/2015/
http://link.springer.com/chapter/10.1007/978-3-319-22698-9_27
http://link.springer.com/chapter/10.1007/978-3-319-22698-9_27
http://dx.doi.org/10.1145/2757710.2757735
https://tools.ietf.org/html/rfc6455
http://dx.doi.org/10.1145/2491568.2491591
https://developers.google.com/nearby/
http://dx.doi.org/10.1145/2702123.2702432
http://dl.acm.org/citation.cfm?id=2436211
http://dx.doi.org/10.1145/2757710.2776806
http://dx.doi.org/10.1145/1873951.1874203
http://dx.doi.org/10.1145/2556288.2557001

17.

18.

19.

20.

Jorg Miiller, Robert Walter, Gilles Bailly, Michael Nischt,
and Florian Alt. 2012. Looking Glass: A Field Study on
Noticing Interactivity of a Shop Window. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 297-306. DOI:
http://dx.doi.org/10.1145/2207676.2207718

Albert Ng, Julian Lepinski, Daniel Wigdor, Steven
Sanders, and Paul Dietz. 2012. Designing for
Low-latency Direct-touch Input. In Proceedings of the
25th Annual ACM Symposium on User Interface Software
and Technology (UIST ’12). ACM, New York, NY, USA,
453-464.DOI:
http://dx.doi.org/10.1145/2380116.2380174

E. Oat, M. Di Francesco, and T. Aura. 2014. MoCHA:
Augmenting pervasive displays through mobile devices
and web-based technologies. In Pervasive Computing and
Communications Workshops (PERCOM Workshops),
2014 IEEE International Conference on. 506-511. DOI:
http://dx.doi.org/10.1109/PerComW.2014.6815258

Joe Padre. 2014. Understanding touch responsiveness -
Touchscreen technology series 2. (2014). Retrieved April
15, 2016 from http://developer.sonymobile.com/
2014/07/02/understanding-touch-responsiveness-
touchscreen-technology-series-2/.

21.

22.

23.

24.

25.

Umar Rashid, Miguel A. Nacenta, and Aaron Quigley.
2012. The Cost of Display Switching: A Comparison of
Mobile, Large Display and Hybrid UI Configurations. In
Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI ’12). ACM, New York,
NY, USA, 99-106. DOI :
http://dx.doi.org/10.1145/2254556.2254577

Keith Vertanen, Justin Emge, Haythem Memmi, and

Per Ola Kristensson. 2014. Text Blaster: A Multi-player
Touchscreen Typing Game. In CHI ’14 Extended
Abstracts on Human Factors in Computing Systems (CHI
EA ’14). ACM, New York, NY, USA, 379-382. DOI:
http://dx.doi.org/10.1145/2559206.2574802

Nathan Weitzner, Jason Freeman, Yan-Ling Chen, and
Stephen Garrett. 2013. massMobile: towards a flexible
framework for large-scale participatory collaborations in
live performances. Organised Sound 18, Special Issue 01
(April 2013), 30-42. DOTI:
http://dx.doi.org/10.1017/S1355771812000222

Christopher D. Wickens, Justin G. Hollands, and Raja
Parasuraman. 2012. Engineering Psychology & Human
Performance (4th ed.). CRC Press, Boston.

Shumin Zhai. 1995. Human performance in six degree of
freedom input control. Ph.D. Dissertation. University of
Toronto.

http://dx.doi.org/10.1145/2207676.2207718
http://dx.doi.org/10.1145/2380116.2380174
http://dx.doi.org/10.1109/PerComW.2014.6815258
http://developer.sonymobile.com/2014/07/02/understanding-touch-responsiveness-touchscreen-technology-series-2/
http://developer.sonymobile.com/2014/07/02/understanding-touch-responsiveness-touchscreen-technology-series-2/
http://developer.sonymobile.com/2014/07/02/understanding-touch-responsiveness-touchscreen-technology-series-2/
http://dx.doi.org/10.1145/2254556.2254577
http://dx.doi.org/10.1145/2559206.2574802
http://dx.doi.org/10.1017/S1355771812000222

	Introduction and Motivation
	Related Work
	Architecture of M3 Framework
	Frontend
	Backend
	Application

	Analysis of Latency Sources
	Framework components
	External components
	Interpretation and discussion

	Real-World Deployment of M3
	Conclusion and Future Work
	Acknowledgments
	REFERENCES

